Tibio-femoral kinematics of natural versus replaced knees – A comparison using dynamic videofluoroscopy


    • Anderst W.
    • Zauel R.
    • Bishop J.
    • Demps E.
    • Tashman S.

    Validation of three-dimensional model-based tibio-femoral tracking during running.

    Med. Eng. Phys. 2009; 31: 10-16

    • Andriacchi T.P.
    • Alexander E.J.
    • Toney M.K.
    • Dyrby C.
    • Sum J.

    A point cluster method for in vivo motion analysis: applied to a study of knee kinematics.

    J. Biomech. Eng. 1998; 120: 743-749

    • Banks S.A.
    • Markovich G.D.
    • Hodge W.A.

    In vivo kinematics of cruciate-retaining and -substituting knee arthroplasties.

    J. Arthroplast. 1997; 12: 297-304

    • Bellemans J.
    • Colyn W.
    • Vandenneucker H.
    • Victor J.

    The Chitranjan Ranawat award: is neutral mechanical alignment normal for all patients? The concept of constitutional varus.

    Clin. Orthop. Relat. Res. 2012; 470: 45-53

    • Bourne R.B.
    • Chesworth B.M.
    • Davis A.M.
    • Mahomed N.N.
    • Charron K.D.

    Patient satisfaction after total knee arthroplasty: who is satisfied and who is not?.

    Clin. Orthop. Relat. Res. 2010; 468: 57-63

    • Burckhardt K.
    • Szekely G.
    • Notzli H.
    • Hodler J.
    • Gerber C.

    Submillimeter measurement of cup migration in clinical standard radiographs.

    IEEE Trans. Med. Imaging. 2005; 24: 676-688

    • Cappozzo A.
    • Croce U.D.
    • Leardini A.
    • Chiari L.

    Human movement analysis using stereophotogrammetry. Part 1: theoretical background.

    Gait Posture. 2005; 21: 186-196

    • Cates H.E.
    • Komistek R.D.
    • Mahfouz M.R.
    • Schmidt M.A.
    • Anderle M.

    In vivo comparison of knee kinematics for subjects having either a posterior stabilized or cruciate retaining high-flexion total knee arthroplasty.

    J. Arthroplast. 2008; 23: 1057-1067

    • DeFrate L.E.
    • Sun H.
    • Gill T.J.
    • Rubash H.E.
    • Li G.

    In vivo tibiofemoral contact analysis using 3D MRI-based knee models.

    J. Biomech. 2004; 37: 1499-1504

    • Dennis D.
    • Komistek R.
    • Scuderi G.
    • Argenson J.N.
    • Insall J.
    • Mahfouz M.
    • Aubaniac J.M.
    • Haas B.

    In vivo three-dimensional determination of kinematics for subjects with a normal knee or a unicompartmental or total knee replacement.

    J. Bone Joint Surg. Am. 2001; 83-A: 104-115

    • Dennis D.A.
    • Komistek R.D.
    • Mahfouz M.R.

    In vivo fluoroscopic analysis of fixed-bearing total knee replacements.

    Clin. Orthop. Relat. Res. 2003; : 114-130

    • Dunbar M.J.
    • Richardson G.
    • Robertsson O.

    I can’t get no satisfaction after my total knee replacement: rhymes and reasons.

    Bone Joint J. 2013; 95-B: 148-152

    • Ehrig R.M.
    • Taylor W.R.
    • Duda G.N.
    • Heller M.O.

    A survey of formal methods for determining the Centre of rotation of ball joints.

    J. Biomech. 2006; 39: 2798-2809

    • Ehrig R.M.
    • Taylor W.R.
    • Duda G.N.
    • Heller M.O.

    A survey of formal methods for determining functional joint axes.

    J. Biomech. 2007; 40: 2150-2157

    • Folinais D.
    • Thelen P.
    • Delin C.
    • Radier C.
    • Catonne Y.
    • Lazennec J.Y.

    Measuring femoral and rotational alignment: EOS system versus computed tomography.

    Orthop. Traumatol. Surg. Res. 2013; 99: 509-516

    • Foresti M.

    In Vivo Measurement of Total Knee Joint Replacement Kinematics and Kinetics during Stair Descent, D-MAVT.

    ETH Zürich,
    Zürich2009 (p. 77)

    • Galvin C.R.
    • Perriman D.M.
    • Lynch J.T.
    • Pickering M.R.
    • Newman P.
    • Smith P.N.
    • Scarvell J.M.

    Age has a minimal effect on knee kinematics: a cross-sectional 3D/2D image-registration study of kneeling.

    Knee. 2019; 26: 988-1002

    • Ghirardelli S.
    • Asay J.L.
    • Leonardi E.A.
    • Amoroso T.
    • Andriacchi T.P.
    • Indelli P.F.

    Kinematic comparison between medially congruent and posterior-stabilized third-generation TKA designs.

    J. Funct. Morphol. Kinesiol. 2021; 6

    • Gray H.A.
    • Guan S.
    • Thomeer L.T.
    • Schache A.G.
    • de Steiger R.
    • Pandy M.G.

    Three-dimensional motion of the knee-joint complex during normal walking revealed by mobile biplane X-ray imaging.

    J. Orthop. Res. 2019; 37: 615-630

    • Gray H.A.
    • Guan S.
    • Young T.J.
    • Dowsey M.M.
    • Choong P.F.
    • Pandy M.G.

    Comparison of posterior-stabilized, cruciate-retaining, and medial-stabilized knee implant motion during gait.

    J. Orthop. Res. 2020; 38: 1753-1768

    • Grieco T.F.
    • Sharma A.
    • Komistek R.D.
    • Cates H.E.

    Single versus multiple-radii cruciate-retaining total knee arthroplasty: an in vivo Mobile fluoroscopy study.

    J. Arthroplast. 2016; 31: 694-701

    • Grood E.S.
    • Suntay W.J.

    A joint coordinate system for the clinical description of three-dimensional motions: application to the knee.

    J. Biomech. Eng. 1983; 105: 136-144

    • Guan S.
    • Gray H.A.
    • Keynejad F.
    • Pandy M.G.

    Mobile biplane X-ray imaging system for measuring 3D dynamic joint motion during Overground gait.

    IEEE Trans. Med. Imaging. 2016; 35: 326-336

    • Hamai S.
    • Moro-oka T.A.
    • Dunbar N.J.
    • Miura H.
    • Iwamoto Y.
    • Banks S.A.

    In vivo healthy knee kinematics during dynamic full flexion.

    Biomed. Res. Int. 2013; 2013717546

    • Hill P.F.
    • Vedi V.
    • Williams A.
    • Iwaki H.
    • Pinskerova V.
    • Freeman M.A.

    Tibiofemoral movement 2: the loaded and unloaded living knee studied by MRI.

    J. Bone Joint Surg. (Br.). 2000; 82: 1196-1198

    • Hitz M.
    • Schütz P.
    • Angst M.
    • Taylor W.R.
    • List R.

    Influence of the moving fluoroscope on gait patterns.

    PLoS One. 2018; 13e0200608

    • Hosseini Nasab S.H.
    • Smith C.
    • Schutz P.
    • Postolka B.
    • Ferguson S.
    • Taylor W.R.
    • List R.

    Elongation patterns of the posterior cruciate ligament after total knee arthroplasty.

    J. Clin. Med. 2020; 9: 2078

    • Komistek R.D.
    • Dennis D.A.
    • Mahfouz M.

    In vivo fluoroscopic analysis of the normal human knee.

    Clin. Orthop. Relat. Res. 2003; : 69-81

    • Koo Y.J.
    • Koo S.

    Three-dimensional kinematic coupling in the knee during normal walking.

    J. Biomech. Eng. 2019; 141081012

    • Kozanek M.
    • Hosseini A.
    • Liu F.
    • Van de Velde S.K.
    • Gill T.J.
    • Rubash H.E.
    • Li G.

    Tibiofemoral kinematics and condylar motion during the stance phase of gait.

    J. Biomech. 2009; 42: 1877-1884

    • Li G.
    • Van de Velde S.K.
    • Bingham J.T.

    Validation of a non-invasive fluoroscopic imaging technique for the measurement of dynamic knee joint motion.

    J. Biomech. 2008; 41: 1616-1622

    • List R.
    • Foresti M.
    • Gerber H.
    • Goldhahn J.
    • Rippstein P.
    • Stussi E.

    Three-dimensional kinematics of an unconstrained ankle arthroplasty: a preliminary in vivo videofluoroscopic feasibility study.

    Foot Ankle Int./Am. Orthop. Foot Ankle Soc. [and] Swiss Foot Ankle Soc. 2012; 33: 883-892

    • List R.
    • Postolka B.
    • Schütz P.
    • Hitz M.
    • Schwilch P.
    • Gerber H.
    • Ferguson S.J.
    • Taylor W.R.

    A moving fluoroscope to capture tibiofemoral kinematics during complete cycles of free level and downhill walking as well as stair descent.

    PLoS One. 2017; 12e0185952

    • List R.
    • Schütz P.
    • Angst M.
    • Ellenberger L.
    • Datwyler K.
    • Ferguson S.J.
    • Writing C.

    Videofluoroscopic evaluation of the influence of a gradually reducing femoral radius on joint kinematics during daily activities in Total knee arthroplasty.

    J. Arthroplast. 2020; 35: 3010-3030

    • Liu F.
    • Kozanek M.
    • Hosseini A.
    • Van de Velde S.K.
    • Gill T.J.
    • Rubash H.E.
    • Li G.

    In vivo tibiofemoral cartilage deformation during the stance phase of gait.

    J. Biomech. 2010; 43: 658-665

    • Miura K.
    • Ohkoshi Y.
    • Ino T.
    • Ukishiro K.
    • Kawakami K.
    • Suzuki S.
    • Suzuki K.
    • Maeda T.

    Kinematics and center of axial rotation during walking after medial pivot type total knee arthroplasty.

    J. Exp. Orthop. 2020; 7: 72

    • Moewis P.
    • Duda G.N.
    • Jung T.
    • Heller M.O.
    • Boeth H.
    • Kaptein B.
    • Taylor W.R.

    The restoration of passive rotational tibio-femoral laxity after anterior cruciate ligament reconstruction.

    PLoS One. 2016; 11e0159600

    • Moro-oka T.A.
    • Hamai S.
    • Miura H.
    • Shimoto T.
    • Higaki H.
    • Fregly B.J.
    • Iwamoto Y.
    • Banks S.A.

    Dynamic activity dependence of in vivo normal knee kinematics.

    J. Orthop. Res. 2008; 26: 428-434

    • Moro-oka T.A.
    • Muenchinger M.
    • Canciani J.P.
    • Banks S.A.

    Comparing in vivo kinematics of anterior cruciate-retaining and posterior cruciate-retaining total knee arthroplasty.

    Knee Surg. Sports Traumatol. Arthrosc. 2007; 15: 93-99

    • Nasab S.H.H.
    • Smith C.R.
    • Postolka B.
    • Schutz P.
    • List R.
    • Taylor W.R.

    In vivo elongation patterns of the collateral ligaments in healthy knees during functional activities.

    J. Bone Joint Surg. Am. 2021;

    • Pataky T.C.
    • Robinson M.A.
    • Vanrenterghem J.

    Region-of-interest analyses of one-dimensional biomechanical trajectories: bridging 0D and 1D theory, augmenting statistical power.

    PeerJ. 2016; 4e2652

    • Pauchard Y.
    • Fitze T.
    • Browarnik D.
    • Eskandari A.
    • Pauchard I.
    • Enns-Bray W.
    • Palsson H.
    • Sigurdsson S.
    • Ferguson S.J.
    • Harris T.B.
    • Gudnason V.
    • Helgason B.

    Interactive graph-cut segmentation for fast creation of finite element models from clinical ct data for hip fracture prediction.

    Comput. Methods Biomech. Biomed. Eng. 2016; 19: 1693-1703

    • Pfitzner T.
    • Moewis P.
    • Stein P.
    • Boeth H.
    • Trepczynski A.
    • von Roth P.
    • Duda G.N.

    Modifications of femoral component design in multi-radius total knee arthroplasty lead to higher lateral posterior femoro-tibial translation.

    Knee Surg. Sports Traumatol. Arthrosc. 2018; 26: 1645-1655

    • Pinskerova V.
    • Johal P.
    • Nakagawa S.
    • Sosna A.
    • Williams A.
    • Gedroyc W.
    • Freeman M.A.

    Does the femur roll-back with flexion?.

    J. Bone Joint Surg. (Br.). 2004; 86: 925-931

    • Postolka B.
    • List R.
    • Thelen B.
    • Schütz P.
    • Taylor W.R.
    • Zheng G.

    Evaluation of an intensity-based algorithm for 2D/3D registration of natural knee videofluoroscopy data.

    Med. Eng. Phys. 2020; 77: 107-113

    • Postolka B.
    • Schütz P.
    • Fucentese S.F.
    • Freeman M.A.R.
    • Pinskerova V.
    • List R.
    • Taylor W.R.

    Tibio-femoral kinematics of the healthy knee joint throughout complete cycles of gait activities.

    J. Biomech. 2020; : 110

    • Postolka B.
    • Taylor W.R.
    • Dätwyler K.
    • Heller M.O.
    • List R.
    • Schütz P.

    Interpretations of tibio-femoral kinematics critically depends upon the kinematic analysis approach: A survey and comparison of methodologies.

    2021 (in review)

    • Robertsson O.
    • Dunbar M.
    • Pehrsson T.
    • Knutson K.
    • Lidgren L.

    Patient satisfaction after knee arthroplasty: a report on 27,372 knees operated on between 1981 and 1995 in Sweden.

    Acta Orthop. Scand. 2000; 71: 262-267

    • Schütz P.
    • Postolka B.
    • Gerber H.
    • Ferguson S.J.
    • Taylor W.R.
    • List R.

    Knee implant kinematics are task-dependent.

    J. R. Soc. Interface. 2019; 16: 20180678

    • Schütz P.
    • Taylor W.R.
    • Postolka B.
    • Fucentese S.F.
    • Koch P.P.
    • Freeman M.A.R.
    • Pinskerova V.
    • List R.

    Kinematic evaluation of the GMK sphere implant during gait activities: a dynamic videofluoroscopy study.

    J. Orthop. Res. 2019; 37: 2337-2347

    • Scott G.
    • Imam M.A.
    • Eifert A.
    • Freeman M.A.R.
    • Pinskerova V.
    • Field R.E.
    • Skinner J.
    • Banks S.A.

    Can a total knee arthroplasty be both rotationally unconstrained and anteroposteriorly stabilised?.

    Bone Joint Res. 2016; 5: 80-86

    • Sharma A.
    • Leszko F.
    • Komistek R.D.
    • Scuderi G.R.
    • Cates Jr., H.E.
    • Liu F.

    In vivo patellofemoral forces in high flexion total knee arthroplasty.

    J. Biomech. 2008; 41: 642-648

    • Stacoff A.
    • Diezi C.
    • Luder G.
    • Stussi E.
    • Kramers-de Quervain I.A.

    Ground reaction forces on stairs: effects of stair inclination and age.

    Gait Posture. 2005; 21: 24-38

    • Tanifuji O.
    • Sato T.
    • Kobayashi K.
    • Mochizuki T.
    • Koga Y.
    • Yamagiwa H.
    • Omori G.
    • Endo N.

    Three-dimensional in vivo motion analysis of normal knees using single-plane fluoroscopy.

    J. Orthop. Sci. 2011; 16: 710-718

    • Taylor W.R.
    • Ehrig R.M.
    • Duda G.N.
    • Schell H.
    • Seebeck P.
    • Heller M.O.

    On the influence of soft tissue coverage in the determination of bone kinematics using skin markers.

    J. Orthop. Res. 2005; 23: 726-734

    • Victor J.
    • Banks S.
    • Bellemans J.

    Kinematics of posterior cruciate ligament-retaining and -substituting total knee arthroplasty.

    J. Bone Joint Surg. (Br.). 2005; 87B: 646-655



  • Source link

    Leave a Reply

    Your email address will not be published.

    Previous Article

    TINI Leads Billboard Argentina Hot 100 With ‘La Triple T’

    Next Article

    Lightning Strike Causes Significant Damage To Jetstar Boeing 787

    Related Posts