Three decades of gait index development: A comparative review of clinical and research gait indices


    • del Pilar Duque Orozco M.
    • Abousamra O.
    • Church C.
    • Lennon N.
    • Henley J.
    • Rogers K.J.
    • Sees J.P.
    • Connor J.
    • Miller F.

    Reliability and validity of Edinburgh visual gait score as an evaluation tool for children with cerebral palsy.

    Gait Posture. 2016; 49: 14-18https://doi.org/10.1016/j.gaitpost.2016.06.017

    • Ambrósio J.A.
    • Tavares da Silva M.

    A Biomechanical Multibody Model with a Detailed Locomotion Muscle Apparatus.

    Adv. Comput. multibody Syst. 2005; 155–184

    • Andriacchi T.P.
    • Alexander E.J.

    Studies of human locomotion: Past, present and future.

    J. Biomech. 2000; 33: 1217-1224https://doi.org/10.1016/S0021-9290(00)00061-0

    • Araújo P.A.
    • Kirkwood R.N.
    • Figueiredo E.M.

    Validity and intra-and inter-rater reliability of the Observational Gait Scale for children with spastic cerebral palsy.

    Rev. Bras. Fis. 2009; 13: 267-273

    • Aroojis A.
    • Sagade B.
    • Chand S.

    Usability and Reliability of the Edinburgh Visual Gait Score in Children with Spastic Cerebral Palsy Using Smartphone Slow-Motion Video Technology and a Motion Analysis Application: A Pilot Study.

    Indian J. Orthop. 2021; 1–8https://doi.org/10.1007/s43465-020-00332-y

    • Assi A.
    • Ghanem I.
    • Lavaste F.
    • Skalli W.

    Gait analysis in children and uncertainty assessment for Davis protocol and Gillette Gait Index.

    Gait Posture. 2009; 30: 22-26

    • Baker R.
    • McGinley J.L.
    • Schwartz M.H.
    • Beynon S.
    • Rozumalski A.
    • Graham H.K.
    • Tirosh O.

    The gait profile score and movement analysis profile.

    Gait Posture. 2009; 30: 265-269

    • Baker R.
    • McGinley J.L.
    • Schwartz M.
    • Thomason P.
    • Rodda J.
    • Graham H.K.

    The minimal clinically important difference for the Gait Profile Score.

    Gait Posture. 2012; 35: 612-615

    • Balasubramanian C.K.
    • Clark D.J.
    • Gouelle A.

    Validity of the Gait Variability Index in older adults: Effect of aging and mobility impairments.

    Gait Posture. 2015; 41: 941-946

    • Barton G.
    • Lisboa P.
    • Lees A.
    • Attfield S.

    Gait quality assessment using self-organising artificial neural networks.

    Gait Posture. 2007; 25: 374-379https://doi.org/10.1016/j.gaitpost.2006.05.003

    • Barton G.J.
    • Hawken M.B.
    • Scott M.A.
    • Schwartz M.H.

    Movement Deviation Profile: A measure of distance from normality using a self-organizing neural network.

    Hum. Mov. Sci. 2012; 31: 284-294

    • Barton G.J.
    • Hawkes D.H.
    • Alizadehkhaiyat O.
    • Howard A.J.
    • Roebuck M.M.
    • Fisher A.C.
    • Frostick S.P.
    • Robinson M.A.
    • Hawken M.B.

    Correlation of the movement deviation profile of shoulder muscle EMG with measures of shoulder function.

    Gait Posture. 2013; ()

    • Barton G.J.
    • Hawken M.B.
    • Holmes G.
    • Schwartz M.H.

    A gait index may underestimate changes of gait: a comparison of the Movement Deviation Profile and the Gait Deviation Index.

    Comput. Methods Biomech. Biomed. Engin. 2015; 18: 57-63

    • Barton G.J.
    • King S.L.
    • Robinson M.A.
    • Hawken M.B.
    • Ranganath L.R.

    Age-related deviation of gait from normality in alkaptonuria, in.

    JIMD Reports. 2015; 24 (): 39-44

    • Barton G.J.
    • Hawken M.B.
    • Scott M.A.
    • Schwartz M.H.

    Leaving hip rotation out of a conventional 3D gait model improves discrimination of pathological gait in cerebral palsy: A novel neural network analysis.

    Gait Posture. 2019; 70: 48-52

    • Bella G.P.
    • Rodrigues N.B.B.
    • Valenciano P.J.
    • Silva L.M.A.E.
    • Souza R.C.T.

    Correlation among the visual gait assessment scale, Edinburgh visual gait scale and observational gait scale in children with spastic diplegic cerebral palsy.

    Rev. Bras. Fis. 2012; 16: 134-140

    • Bervet K.
    • Bessette M.
    • Godet L.
    • Crétual A.

    KeR-EGI, a new index of gait quantification based on electromyography.

    J. Electromyogr. Kinesiol. 2013; 23: 930-937

    • Beynon S.
    • McGinley J.L.
    • Dobson F.
    • Baker R.

    Correlations of the gait profile score and the movement analysis profile relative to clinical judgments.

    Gait Posture. 2010; 32: 129-132

    • Bigoni M.
    • Cimolin V.
    • Vismara L.
    • Tarantino A.
    • Clerici D.
    • Baudo S.
    • Galli M.
    • Mauro A.

    Relationship between gait profile score and clinical assessments of gait in post-stroke patients.

    J. Rehabil. Med. 2021; 0https://doi.org/10.2340/16501977-2809

  • Neural networks for pattern recognition.

    Oxford university press,
    1995

    • Bonnefoy-Mazure A.
    • Sagawa Jr., Y.
    • Lascombes P.
    • De Coulon G.
    • Armand S.

    Identification of gait patterns in individuals with cerebral palsy using multiple correspondence analysis.

    Res. Dev. Disabil. 2013; 34: 2684-2693

    • Bonnefoy-Mazure A.
    • De Coulon G.
    • Armand S.

    Self-perceived gait quality in young adults with cerebral palsy.

    Dev. Med. Child Neurol. 2020; 62: 868-873https://doi.org/10.1111/dmcn.14504

    • Borel S.
    • Schneider P.
    • Newman C.J.

    Video analysis software increases the interrater reliability of video gait assessments in children with cerebral palsy.

    Gait Posture. 2011; https://doi.org/10.1016/j.gaitpost.2011.02.012

  • Objective measurement of clinical findings in the use of botulinum toxin type A for the management of children with cerebral palsy.

    Eur. J. Neurol. 1999; 6: s23-s35

    • Boyd R.N.
    • Graham J.E.A.
    • Nattrass G.R.
    • Graham H.K.

    Medium-term response characterisation and risk factor analysis of botulinum toxin type A in the management of spasticity in children with cerebral palsy.

    Eur. J. Neurol. 1999; 6: s37-s45

  • The impact of centre of pressure error on predicted joint kinetics during cerebral palsy and typically developed gait: A clinical perspective.

    J. Biomech. 2019; 92: 155-161https://doi.org/10.1016/j.jbiomech.2019.05.034

  • Centre of pressure error with increasing gait velocity: The clinical impact on predicted inverse dynamics during gait in children with typical development.

    Gait Posture. 2020; 82: 96-99https://doi.org/10.1016/j.gaitpost.2020.08.127

    • Broström E.W.
    • Esbjörnsson A.C.
    • von Heideken J.
    • Larsson P.
    • Wretenberg P.
    • Iversen M.

    Change in Gait Deviation Index after anti-tumour necrosis factor-α treatment in individuals with rheumatoid arthritis: a pilot study.

    Scand. J. Rheumatol. 2013; 42: 356-361

    • Brown C.R.
    • Hillman S.J.
    • Richardson A.M.
    • Herman J.L.
    • Robb J.E.

    Reliability and validity of the Visual Gait Assessment Scale for children with hemiplegic cerebral palsy when used by experienced and inexperienced observers.

    Gait Posture. 2008; 27: 648-652

  • Toddle temporal-spatial deviation index: Assessment of pediatric gait.

    Gait Posture. 2016; 49: 226-231https://doi.org/10.1016/j.gaitpost.2016.06.040

    • Cahill-Rowley K.
    • Schadl K.
    • Vassar R.
    • Yeom K.
    • Stevenson D.K.
    • Rose J.

    Prediction of gait impairment in toddlers born preterm from near-term brain microstructure assessed with DTI, using exhaustive feature selection and cross-validation.

    Front. Hum. Neurosci. 2019; 13: 305

    • Caldas R.
    • Mundt M.
    • Potthast W.
    • de Lima Buarque
    • Neto F.
    • Markert B.

    A systematic review of gait analysis methods based on inertial sensors and adaptive algorithms.

    Gait Posture. 2017; https://doi.org/10.1016/j.gaitpost.2017.06.019

    • Cansel A.J.M.
    • Stevens J.
    • Bijnens W.
    • Witlox A.M.
    • Meijer K.

    Hallux rigidus affects lower limb kinematics assessed with the Gait Profile Score.

    Gait Posture. 2021; 84: 273-279https://doi.org/10.1016/j.gaitpost.2020.12.017

    • Carse B.
    • Scott H.
    • Brady L.
    • Colvin J.

    A characterisation of established unilateral transfemoral amputee gait using 3D kinematics, kinetics and oxygen consumption measures.

    Gait Posture. 2020; 75: 98-104https://doi.org/10.1016/j.gaitpost.2019.09.029

    • Celletti C.
    • Galli M.
    • Cimolin V.
    • Castori M.
    • Tenore N.
    • Albertini G.
    • Camerota F.

    Use of the Gait Profile Score for the evaluation of patients with joint hypermobility syndrome/Ehlers–Danlos syndrome hypermobility type.

    Res. Dev. Disabil. 2013; 34: 4280-4285

    • de Souza M.A.
    • Cezarani A.
    • Lizzi E.A. Da S.
    • Davoli G.B.
    • De Q.
    • Mattiello S.M.
    • Jones R.
    • Mattiello-Sverzut A.C.

    The use of the gait profile score and gait variable score in individuals with Duchenne Muscular Dystrophy.

    J. Biomech. 2020; 98109485https://doi.org/10.1016/j.jbiomech.2019.109485

  • A review of analytical techniques for gait data. Part 2: neural network and wavelet methods.

    Gait Posture. 2001; 13: 102-120

    • Chester V.L.
    • Tingley M.
    • Biden E.N.

    An extended index to quantify normality of gait in children.

    Gait Posture. 2007; 25: 549-554

    • Chester V.L.
    • Tingley M.
    • Biden E.N.

    Comparison of two normative paediatric gait databases.

    Dyn. Med. 2007; 6: 8

    • Choi S.J.
    • Chung C.Y.
    • Lee K.M.
    • Kwon D.G.
    • Lee S.H.
    • Park M.S.

    Validity of gait parameters for hip flexor contracture in patients with cerebral palsy.

    J. Neuroeng. Rehabil. 2011; 8: 4

    • Choisne J.
    • Fourrier N.
    • Handsfield G.
    • Signal N.
    • Taylor D.
    • Wilson N.
    • Stott S.
    • Besier T.F.

    An Unsupervised Data-Driven Model to Classify Gait Patterns in Children with Cerebral Palsy.

    J. Clin. Med. 2020; 9: 1432https://doi.org/10.3390/jcm9051432

  • Summary measures for clinical gait analysis: a literature review.

    Gait Posture. 2014; 39: 1005-1010

    • Cimolin V.
    • Galli M.
    • Vimercati S.L.
    • Albertini G.

    Use of the Gait Deviation Index for the assessment of gastrocnemius fascia lengthening in children with Cerebral Palsy.

    Res. Dev. Disabil. 2011; 32: 377-381

    • Cimolin V.
    • Condoluci C.
    • Costici P.F.
    • Galli M.

    A proposal for a kinetic summary measure: the Gait Kinetic Index.

    Comput. Methods Biomech. Biomed. Engin. 2019; 22: 94-99

    • Coghe G.
    • Pau M.
    • Mamusa E.
    • Pisano C.
    • Corona F.
    • Pilloni G.
    • Porta M.
    • Marrosu G.
    • Vannelli A.
    • Frau J.
    • Lorefice L.
    • Fenu G.
    • Marrosu M.G.
    • Cocco E.

    Quantifying gait impairment in individuals affected by Charcot-Marie-Tooth disease: the usefulness of gait profile score and gait variable score.

    Disabil. Rehabil. 2020; 42: 737-742https://doi.org/10.1080/09638288.2018.1506946

    • Correa K.P.
    • Devetak G.F.
    • Martello S.K.
    • de Almeida J.C.
    • Pauleto A.C.
    • Manffra E.F.

    Reliability and Minimum Detectable Change of the Gait Deviation Index (GDI) in post-stroke patients.

    Gait Posture. 2017; 53: 29-34https://doi.org/10.1016/j.gaitpost.2016.12.012

    • Cretual A.
    • Bervet K.
    • Ballaz L.

    Gillette gait index in adults.

    Gait Posture. 2010; 32: 307-310

    • Daly J.J.
    • Nethery J.
    • McCabe J.P.
    • Brenner I.
    • Rogers J.
    • Gansen J.
    • Butler K.
    • Burdsall R.
    • Roenigk K.
    • Holcomb J.

    Development and testing of the Gait Assessment and Intervention Tool (GAIT): a measure of coordinated gait components.

    J. Neurosci. Methods. 2009; 178: 334-339

    • Danino B.
    • Erel S.
    • Kfir M.
    • Khamis S.
    • Batt R.
    • Hemo Y.
    • Wientroub S.
    • Hayek S.

    Are gait indices sensitive enough to reflect the effect of ankle foot orthosis on gait impairment in cerebral palsy diplegic patients?.

    J. Pediatr. Orthop. 2016; 36: 294-298

    • Deluzio K.J.
    • Astephen J.L.

    Biomechanical features of gait waveform data associated with knee osteoarthritis. An application of principal component analysis.

    Gait Posture. 2007; 25: 86-93https://doi.org/10.1016/j.gaitpost.2006.01.007

  • Validation of a visual gait assessment scale for children with hemiplegic cerebral palsy.

    Gait Posture. 2006; 23: 78-82https://doi.org/10.1016/j.gaitpost.2004.12.002

    • Duque K.R.
    • Marsili L.
    • Sturchio A.
    • Mahajan A.
    • Merola A.
    • Espay A.J.
    • Kauffman M.A.

    Progressive Ataxia with Hemiplegic Migraines: a Phenotype of CACNA1A Missense Mutations, Not CAG Repeat Expansions.

    Cerebellum. 2021; 20: 134-139https://doi.org/10.1007/s12311-020-01185-9

    • Dürregger C.
    • Adamer K.A.
    • Pirchl M.
    • Fischer M.J.

    Inter-rater reliability of a newly developed gait analysis and motion score.

    J. Orthop. Trauma Rehabil. 2020; ()https://doi.org/10.1177/2210491720967366

    • Esbjörnsson A.C.
    • Rozumalski A.
    • Iversen M.D.
    • Schwartz M.H.
    • Wretenberg P.
    • Broström E.W.

    Quantifying gait deviations in individuals with rheumatoid arthritis using the Gait Deviation Index.

    Scand. J. Rheumatol. 2014; 43: 124-131

    • Ferreira L.A.B.
    • Cimolin V.
    • Costici P.F.
    • Albertini G.
    • Oliveira C.S.
    • Galli M.

    Effects of gastrocnemius fascia lengthening on gait pattern in children with cerebral palsy using the gait profile score.

    Res. Dev. Disabil. 2014; 35: 1137-1143

    • Ferreira C.L.
    • Barton G.
    • Borges L.D.
    • dos Anjos Rabelo N.D.
    • Politti F.
    • Lucareli P.R.G.

    Step down tests are the tasks that most differentiate the kinematics of women with patellofemoral pain compared to asymptomatic controls.

    Gait Posture. 2019; 72: 129-134

    • Flett P.J.
    • Stern L.M.
    • Waddy H.
    • Connell T.M.
    • Seeger J.D.
    • Gibson S.K.

    Botulinum toxin A versus fixed cast stretching for dynamic calf tightness in cerebral palsy.

    J. Paediatr. Child Health. 1999; 35: 71-77

  • Multichannel SEMG in clinical gait analysis: A review and state-of-the-art.

    Clin. Biomech. 2009; 24: 236-245https://doi.org/10.1016/j.clinbiomech.2008.07.012

    • Galli M.
    • Cimolin V.
    • De Pandis M.F.
    • Schwartz M.H.
    • Albertini G.

    Use of the Gait Deviation index for the evaluation of patients with Parkinson’s disease.

    J. Mot. Behav. 2012; 44: 161-167

    • Galli M.
    • Ferrario D.
    • Patti P.
    • Freedland R.
    • Cimolin V.
    • Gavin M.
    • Velinov M.T.
    • Heaney G.
    • Brown W.T.
    • Albertini G.

    The use of 3d motion analysis in a patient with an atypical juvenile neuronal ceroid lipofuscinoses phenotype with CLN1 mutation and deficient PPT activity.

    J. Dev. Phys. Disabil. 2012; 24: 155-165

    • Galli M.
    • Cimolin V.
    • De Pandis M.F.
    • Le Pera D.
    • Sova I.
    • Albertini G.
    • Stocchi F.
    • Franceschini M.

    Robot-assisted gait training versus treadmill training in patients with Parkinson’s disease: a kinematic evaluation with gait profile score.

    Funct. Neurol. 2016; 31: 163

    • Givon U.
    • Zeilig G.
    • Achiron A.

    Gait analysis in multiple sclerosis: characterization of temporal–spatial parameters using GAITRite functional ambulation system.

    Gait Posture. 2009; 29: 138-142

    • Gor-García-Fogeda M.D.
    • Cano De La Cuerda R.
    • Carratalá Tejada M.
    • Alguacil-Diego I.M.
    • Molina-Rueda F.

    Observational gait assessments in people with neurological disorders: A systematic review.

    Arch. Phys. Med. Rehabil. 2016; 97: 131-140https://doi.org/10.1016/j.apmr.2015.07.018

    • Gor-García-Fogeda M.D.
    • Cano-de-la-Cuerda R.
    • Daly J.J.
    • Molina-Rueda F.

    Construct Validity of the Gait Assessment and Intervention Tool (GAIT) in People With Multiple Sclerosis.

    PM R. 2020; 13: 307-313https://doi.org/10.1002/pmrj.12423

    • Gor-García-Fogeda M.D.
    • Tomé-Redondo S.
    • Simón-Hidalgo C.
    • Daly J.J.
    • Molina-Rueda F.
    • Cano-de-la-Cuerda R.

    Reliability and Minimal Detectable Change in the Gait Assessment and Intervention Tool in Patients With Multiple Sclerosis.

    PM R. 2020; 12: 685-691https://doi.org/10.1002/pmrj.12264

    • Gouelle A.
    • Mégrot F.
    • Presedo A.
    • Penneçot G.-F.
    • Yelnik A.

    Validity of Functional Ambulation Performance Score for the evaluation of spatiotemporal parameters of children’s gait.

    J. Mot. Behav. 2011; 43: 95-100

    • Gouelle A.
    • Mégrot F.
    • Presedo A.
    • Husson I.
    • Yelnik A.
    • Penneçot G.-F.

    The gait variability index: a new way to quantify fluctuation magnitude of spatiotemporal parameters during gait.

    Gait Posture. 2013; 38: 461-465

    • Gouelle A.
    • Rennie L.
    • Clark D.J.
    • Mégrot F.
    • Balasubramanian C.K.

    Addressing limitations of the gait variability index to enhance its applicability: The enhanced GVI (EGVI).

    PLoS One. 2018; 13e0198267https://doi.org/10.1371/journal.pone.0198267

    • Gretz H.R.
    • Doering L.L.
    • Quinn J.
    • Raftopoulos M.
    • Nelson A.J.
    • Zwick D.E.

    Functional ambulation performance testing of adults with Down syndrome.

    NeuroRehabilitation. 1998; 11: 211-225

    • Grunt S.
    • van Kampen P.J.
    • van der Krogt M.M.
    • Brehm M.A.
    • Doorenbosch C.A.M.
    • Becher J.G.

    Reproducibility and validity of video screen measurements of gait in children with spastic cerebral palsy.

    Gait Posture. 2010; 31: 489-494https://doi.org/10.1016/j.gaitpost.2010.02.006

  • Responsiveness of Edinburgh Visual Gait Score to orthopedic surgical intervention of the lower limbs in children with cerebral palsy.

    Am. J. Phys. Med. Rehabil. 2012; 91: 761-767

  • Application of the Gait Deviation Index in the analysis of post-stroke hemiparetic gait.

    J. Biomech. 2020; 99109575https://doi.org/10.1016/j.jbiomech.2019.109575

    • Guzik A.
    • Drużbicki M.
    • Przysada G.
    • Wolan-Nieroda A.
    • Szczepanik M.
    • Bazarnik-Mucha K.
    • Kwolek A.

    Validity of the gait variability index for individuals after a stroke in a chronic stage of recovery.

    Gait Posture. 2019; 68: 63-67https://doi.org/10.1016/j.gaitpost.2018.11.014

    • Guzik A.
    • Drużbicki M.
    • Perenc L.
    • Podgórska-Bednarz J.

    Can an Observational Gait Scale Produce a Result Consistent with Symmetry Indexes Obtained from 3-Dimensional Gait Analysis?: A Concurrent Validity Study.

    J. Clin. Med. 2020; 9: 926https://doi.org/10.3390/jcm9040926

    • Haddas R.
    • Boah A.
    • Block A.

    Fear-avoidance and Patients’ Reported Outcomes are Strongly Correlated With Biomechanical Gait Parameters in Cervical Spondylotic Myelopathy Patients.

    Clin. Spine Surg. 2020;

  • Video gait analysis for ambulatory children with cerebral palsy: Why, when, where and how!.

    Gait Posture. 2011; 33: 501-503https://doi.org/10.1016/j.gaitpost.2010.11.025

  • Measures of adult general performance tests: The Berg Balance Scale, Dynamic Gait Index (DGI), Gait Velocity, Physical Performance Test (PPT), Timed Chair Stand Test, Timed Up and Go, and Tinetti Performance-Oriented Mobility Assessment (POMA).

    Arthritis Rheum. 2003; 49: S28-S42https://doi.org/10.1002/art.11411

    • Héliot R.
    • Azevedo-Coste C.
    • Schwirtlich L.
    • Espiau B.

    Gait spectral index (GSI): a new quantification method for assessing human gait.

    Health (Irvine. Calif). 2010; 2: 38

    • Hermens H.J.
    • Freriks B.
    • Merletti R.
    • Stegeman D.
    • Blok J.
    • Rau G.
    • Disselhorst-Klug C.
    • Hägg G.

    European recommendations for surface electromyography.

    Roessingh Res. Dev. 1999; 8: 13-54

    • Hochsprung A.
    • Granja Domínguez A.
    • Magni E.
    • Escudero Uribe S.
    • Moreno García A.

    Effect of visual biofeedback cycling training on gait in patients with multiple sclerosis.

    Neurol. English Ed. 2020; 35: 89-95https://doi.org/10.1016/j.nrleng.2017.07.001

    • Hui D.
    • Murgai A.A.
    • Gilmore G.
    • Mohideen S.I.
    • Parrent A.G.
    • Jog M.S.

    Assessing the effect of current steering on the total electrical energy delivered and ambulation in Parkinson’s disease.

    Sci. Rep. 2020; 10: 1-11

    • Ito T.
    • Noritake K.
    • Sugiura Hiroshi
    • Kamiya Y.
    • Tomita H.
    • Ito Y.
    • Sugiura Hideshi
    • Ochi N.
    • Yoshihashi Y.

    Association between Gait Deviation Index and Physical Function in Children with Bilateral Spastic Cerebral Palsy: A Cross-Sectional Study.

    J. Clin. Med. 2019; 9: 28https://doi.org/10.3390/jcm9010028

    • Ito Y.
    • Ito T.
    • Kurahashi N.
    • Ochi N.
    • Noritake K.
    • Sugiura H.
    • Mizuno S.
    • Kidokoro H.
    • Natsume J.
    • Nakamura M.

    Gait characteristics of children with Williams syndrome with impaired visuospatial recognition: a three-dimensional gait analysis study.

    Exp. Brain Res. 2020; 238: 2887-2895https://doi.org/10.1007/s00221-020-05946-0

    • Iwasaki T.
    • Okamoto S.
    • Akiyama Y.
    • Yamada Y.

    Generalized principal motion analysis: Classification of sit-to-stand motions.

    in: 2019 IEEE 8th Global Conference on Consumer Electronics, GCCE 2019. Institute of Electrical and Electronics Engineers Inc.2019: 653-655https://doi.org/10.1109/GCCE46687.2019.9015482

    • Iwasaki T.
    • Okamoto S.
    • Akiyama Y.
    • Yamada Y.

    Principal motion ellipsoids: Gait variability index based on principal motion analysis.

    in: Proceedings of the 2020 IEEE/SICE International Symposium on System Integration, SII 2020. Institute of Electrical and Electronics Engineers Inc.,
    2020: 489-494https://doi.org/10.1109/SII46433.2020.9026296

    • Iwasaki T.
    • Okamoto S.
    • Akiyama Y.
    • Yamada Y.

    Principal Motion Ellipsoids: Gait Variability Index Invariant with Gait Speed.

    IEEE Access. 2020; 8: 213330-213339https://doi.org/10.1109/ACCESS.2020.3041158

    • Jabbar K.A.
    • Seah W.-T.
    • Lau L.K.
    • Pang B.W.J.
    • Ng D.H.-M.
    • Tan Q.L.-L.
    • Chen K.K.
    • Jagadish M.U.
    • Ng T.P.
    • Wee S.-L.

    Enhanced Gait Variability Index in older Asian Adults and Increased Physiological Fall Risk: Results from the Yishun Study.

    Adv. Geriatr. Med. Res. 2020; 4

    • Jensen C.
    • Rosenlund S.
    • Nielsen D.B.
    • Overgaard S.
    • Holsgaard-Larsen A.

    The use of the Gait Deviation Index for the evaluation of participants following total hip arthroplasty: An explorative randomized trial.

    Gait Posture. 2015; 42: 36-41https://doi.org/10.1016/j.gaitpost.2015.02.009

    • Joanna M.
    • Magdalena S.
    • Katarzyna B.-M.
    • Daniel S.
    • Ewa L.-D.

    The Utility of Gait Deviation Index (GDI) and Gait Variability Index (GVI) in Detecting Gait Changes in Spastic Hemiplegic Cerebral Palsy Children Using Ankle–Foot Orthoses (AFO). Children.

    7. 2020: 149https://doi.org/10.3390/children7100149

  • Principal component analysis: A review and recent developments.

    Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2016; 374https://doi.org/10.1098/rsta.2015.0202

    • Kalron A.
    • Frid L.
    • Menascu S.

    Gait Characteristics in Adolescents With Multiple Sclerosis.

    Pediatr. Neurol. 2017; 68: 73-76https://doi.org/10.1016/j.pediatrneurol.2016.11.004

    • Kalsi-Ryan S.
    • Rienmueller A.C.
    • Riehm L.
    • Chan C.
    • Jin D.
    • Martin A.R.
    • Badhiwala J.H.
    • Akbar M.A.
    • Massicotte E.M.
    • Fehlings M.G.

    Quantitative Assessment of Gait Characteristics in Degenerative Cervical Myelopathy: A Prospective Clinical Study.

    J. Clin. Med. 2020; 9: 752https://doi.org/10.3390/jcm9030752

    • Kark L.
    • Vickers D.
    • McIntosh A.
    • Simmons A.

    Use of gait summary measures with lower limb amputees.

    Gait Posture. 2012; 35: 238-243

    • Kawamura C.M.
    • de Morais Filho M.C.
    • Barreto M.M.
    • de Paula Asa S.K.
    • Juliano Y.
    • Novo N.F.

    Comparison between visual and three-dimensional gait analysis in patients with spastic diplegic cerebral palsy.

    Gait Posture. 2007; 25: 18-24

  • Gait analysis at your fingertips: accuracy and reliability of mobile app enhanced observational gait analysis in children with Cerebral Palsy.

    JPOSNA. 2020; : 2

    • Kiernan D.
    • Walsh M.
    • O’sullivan R.
    • O’brien T.
    • Simms C.K.

    The influence of estimated body segment parameters on predicted joint kinetics during diplegic cerebral palsy gait.

    J. Biomech. 2014; 47: 284-288

    • Kim S.
    • Lim Y.H.
    • Kang K.
    • Park D.
    • Lee H.W.
    • Park J.S.

    Functional Ambulation Profile (FAP) Score as a Potential Marker of Gait Analysis in Myotonic Dystrophy Type 1.

    Front. Neurol. 2020; 11: 392https://doi.org/10.3389/fneur.2020.00392

  • The self-organizing map.

    Proc. IEEE. 1990; 78: 1464-1480

    • Koman L.A.
    • Smith B.
    • Goodman A.
    • Mulvaney T.

    Management of cerebral palsy with botulinum-A toxin: preliminary investigation.

    J. Pediatr. Orthop. 1993; 13: 489-495

    • Kulkarni V.A.
    • Kephart D.
    • Olleac R.
    • Davids J.

    Enhancing Observational Gait Analysis–Techniques and Tips for Analyzing Gait Without a Gait Lab.

    JPOSNA. 2020; 2

    • Liu X.
    • Huang H.
    • Ren S.
    • Rong Q.
    • Ao Y.

    Use of the normalcy index for the assessment of abnormal gait in the anterior cruciate ligament deficiency combined with meniscus injury.

    Comput. Methods Biomech. Biomed. Engin. 2020; 23: 1-7https://doi.org/10.1080/10255842.2020.1789119

    • Lööf E.
    • Andriesse H.
    • André M.
    • Böhm S.
    • Iversen M.D.
    • Broström E.W.

    Gross motor skills in children with idiopathic clubfoot and the association between gross motor skills, foot involvement, gait, and foot motion.

    J. Pediatr. Orthop. 2019; 39: 359-365

    • Lord S.E.
    • Halligan P.W.
    • Wade D.T.

    Visual gait analysis: the development of a clinical assessment and scale.

    Clin. Rehabil. 1998; 12: 107-119

    • Lord S.E.
    • Wade D.T.
    • Halligan P.W.

    A comparison of two physiotherapy treatment approaches to improve walking in multiple sclerosis: a pilot randomized controlled study.

    Clin. Rehabil. 1998; 12: 477-486

    • Lugade V.
    • Lin V.
    • Farley A.
    • Chou L.-S.

    An artificial neural network estimation of gait balance control in the elderly using clinical evaluations.

    PLoS One. 2014; 9

    • Maanum G.
    • Jahnsen R.
    • Stanghelle J.K.
    • Sandvik L.
    • Larsen K.L.
    • Keller A.

    Face and construct validity of the Gait Deviation Index in adults with spastic cerebral palsy.

    J. Rehabil. Med. 2012; 44: 272-275

    • Maathuis K.G.B.
    • van der Schans C.P.
    • van Iperen A.
    • Rietman H.S.
    • Geertzen J.H.B.

    Gait in children with cerebral palsy: observer reliability of Physician Rating Scale and Edinburgh Visual Gait Analysis Interval Testing scale.

    J. Pediatr. Orthop. 2005; 25: 268-272

    • MacFarlane C.
    • Hing W.
    • Orr R.

    Using the Edinburgh Visual Gait Score to Compare Ankle-Foot Orthoses, Sensorimotor Orthoses and Barefoot Gait Pattern in Children with Cerebral Palsy.

    Children. 2020; 7: 54

    • Mackey A.H.
    • Lobb G.L.
    • Walt S.E.
    • Stott N.S.

    Reliability and validity of the Observational Gait Scale in children with spastic diplegia.

    Dev. Med. Child Neurol. 2003; 45: 4-11

    • Mansour K. Ben
    • Gorce P.
    • Rezzoug N.

    The multifeature gait score: An accurate way to assess gait quality.

    PLoS One. 2017; 12e0185741https://doi.org/10.1371/journal.pone.0185741

    • Mar D.E.
    • Lieberman I.H.
    • Haddas R.

    102. The gait deviation index as an indicator of gait abnormality among degenerative spinal pathologies.

    Spine J. 2020; 20 ()

    • Massaad A.
    • Assi A.
    • Skalli W.
    • Ghanem I.

    Repeatability and validation of gait deviation index in children: typically developing and cerebral palsy.

    Gait Posture. 2014; 39: 354-358

    • McMulkin M.L.
    • MacWilliams B.A.

    Application of the gillette gait index, gait deviation index and gait profile score to multiple clinical pediatric populations.

    Gait Posture. 2015; 41: 608-612

    • Mindler G.T.
    • Kranzl A.
    • Stauffer A.
    • Haeusler G.
    • Ganger R.
    • Raimann A.

    Disease-specific gait deviations in pediatric patients with X-linked hypophosphatemia.

    Gait Posture. 2020; 81: 78-84https://doi.org/10.1016/j.gaitpost.2020.07.007

    • Moher D.
    • Liberati A.
    • Tetzlaff J.
    • Altman D.G.
    • Mulrow C.
    • Gøtzsche P.C.
    • Ioannidis J.P.A.
    • Clarke M.
    • Devereaux P.J.
    • Kleijnen J.

    The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration.

    Ann. Intern. Med. 2009; 151: W-65

    • Molloy M.
    • McDowell B.C.
    • Kerr C.
    • Cosgrove A.P.

    Further evidence of validity of the Gait Deviation Index.

    Gait Posture. 2010; 31: 479-482

  • Application of principal component analysis in vertical ground reaction force to discriminate normal and abnormal gait.

    Gait Posture. 2009; 29: 31-35https://doi.org/10.1016/j.gaitpost.2008.05.015

    • Naili J.E.
    • Esbjörnsson A.-C.
    • Iversen M.D.
    • Schwartz M.H.
    • Hedström M.
    • Häger C.K.
    • Broström E.W.

    The impact of symptomatic knee osteoarthritis on overall gait pattern deviations and its association with performance-based measures and patient-reported outcomes.

    Knee. 2017; 24: 536-546

    • Naili J.E.
    • Iversen M.D.
    • Esbjörnsson A.-C.
    • Hedström M.
    • Schwartz M.H.
    • Häger C.K.
    • Broström E.W.

    Deficits in functional performance and gait one year after total knee arthroplasty despite improved self-reported function. Knee Surgery.

    Sport. Traumatol. Arthrosc. 2017; 25: 3378-3386

    • Naili J.E.
    • Broström E.W.
    • Clausen B.
    • Holsgaard-Larsen A.

    Measures of knee and gait function and radiographic severity of knee osteoarthritis – A cross-sectional study.

    Gait Posture. 2019; 74: 20-26https://doi.org/10.1016/j.gaitpost.2019.08.003

    • Naili J.E.
    • Hedström M.
    • Broström E.W.

    Changes of and interrelationships between performance-based function and gait and patient-reported function 1 year after total hip arthroplasty.

    J. Orthop. Traumatol. 2019; 20: 14https://doi.org/10.1186/s10195-019-0521-7

  • The role of gait analysis in the orthopaedic management of ambulatory cerebral palsy.

    Curr. Opin. Pediatr. 2007; 19: 38-43

  • Functional ambulation profile.

    Phys. Ther. 1974; 54: 1059-1065

    • Nelson A.J.
    • Zwick D.
    • Brody S.
    • Doran C.
    • Pulver L.
    • Rooz G.
    • Sadownick M.
    • Nelson R.
    • Rothman J.

    The validity of the GaitRite and the Functional Ambulation Performance scoring system in the analysis of Parkinson gait.

    NeuroRehabilitation. 2002; 17: 255-262

    • Novacheck T.F.
    • Stout J.L.
    • Tervo R.

    Reliability and validity of the Gillette Functional Assessment Questionnaire as an outcome measure in children with walking disabilities.

    J. Pediatr. Orthop. 2000; 20: 75

    • Novacheck T.F.
    • Trost J.P.
    • Schwartz M.H.

    Intramuscular psoas lengthening improves dynamic hip function in children with cerebral palsy.

    J. Pediatr. Orthop. 2002; 22: 158-164

  • Aristotle’s De Motu Animalium: Text with translation, commentary, and interpretive essays.

    Princeton University Press,
    1985

    • Oliveira A.R.
    • Gonçalves S.B.
    • de Carvalho M.
    • Silva M.T.

    Development of a Musculotendon Model Within the Framework of Multibody Systems Dynamics.

    Multibody Dynamics. Springer. 2016; : 213-237

    • Ong A.M.L.
    • Hillman S.J.
    • Robb J.E.

    Reliability and validity of the Edinburgh Visual Gait Score for cerebral palsy when used by inexperienced observers.

    Gait Posture. 2008; 28: 323-326https://doi.org/10.1016/j.gaitpost.2008.01.008

    • Opri E.
    • Hu W.
    • Jabarkheel Z.
    • Hess C.W.
    • Schmitt A.C.
    • Gunduz A.
    • Hass C.J.
    • Okun M.S.
    • Wagle Shukla A.

    Gait characterization for patients with orthostatic tremor.

    Parkinsonism Relat. Disord. 2020; 71: 23-27https://doi.org/10.1016/j.parkreldis.2020.01.007

    • Oudenhoven L.M.
    • van der Krogt M.M.
    • Romei M.
    • van Schie P.E.M.
    • van de Pol L.A.
    • van Ouwerkerk W.J.R.
    • Harlaar J.
    • Buizer A.I.

    Factors Associated With Long-Term Improvement of Gait After Selective Dorsal Rhizotomy.

    Arch. Phys. Med. Rehabil. 2019; 100: 474-480https://doi.org/10.1016/j.apmr.2018.06.016

    • Palisano R.
    • Rosenbaum P.
    • Walter S.
    • Russell D.
    • Wood E.
    • Galuppi B.

    Gross motor function classification system for cerebral palsy.

    Dev. Med. Child Neurol. 1997; 39: 214-223

    • Pau M.
    • Coghe G.
    • Atzeni C.
    • Corona F.
    • Pilloni G.
    • Marrosu M.G.
    • Cocco E.
    • Galli M.

    Novel characterization of gait impairments in people with multiple sclerosis by means of the gait profile score.

    J. Neurol. Sci. 2014; 345: 159-163

    • Peurala S.H.
    • Titianova E.B.
    • Mateev P.
    • Pitkänen K.
    • Sivenius J.
    • Tarkka I.M.

    Gait characteristics after gait-oriented rehabilitation in chronic stroke.

    Restor. Neurol. Neurosci. 2005; 23: 57-65

    • Pizzi A.
    • Carlucci G.
    • Falsini C.
    • Lunghi F.
    • Verdesca S.
    • Grippo A.

    Gait in hemiplegia: evaluation of clinical features with the Wisconsin Gait Scale.

    J. Rehabil. Med. 2007; 39: 170-174

    • Podsiadlo D.
    • Richardson S.

    The timed “Up & Go”: a test of basic functional mobility for frail elderly persons.

    J. Am. Geriatr. Soc. 1991; 39: 142-148

    • Putz P.
    • Durstberger S.
    • Kaufmann C.
    • Klinger M.
    • Plessl K.
    • Rejtö J.
    • Widhalm K.
    • Male C.
    • Pabinger I.

    3D gait analysis, haemophilia joint health score, leg muscle laterality and biomarkers of joint damage: A cross-sectional comparative assessment of haemophilic arthropathy.

    Haemophilia. 2020; 26: e323-e333https://doi.org/10.1111/hae.14154

    • Puyuelo-Quintana G.
    • Cano-de-la-Cuerda R.
    • Plaza-Flores A.
    • Garces-Castellote E.
    • Sanz-Merodio D.
    • Goñi-Arana A.
    • Marín-Ojea J.
    • García-Armada E.

    A new lower limb portable exoskeleton for gait assistance in neurological patients: a proof of concept study.

    J. Neuroeng. Rehabil. 2020; 17: 1-16

    • Quental C.
    • Azevedo M.
    • Ambrósio J.
    • Gonçalves S.B.
    • Folgado J.

    Influence of the musculotendon dynamics on the muscle force-sharing problem of the shoulder—a fully inverse dynamics approach.

    J. Biomech. Eng. 2018; 140https://doi.org/10.1115/1.4039675

    • Raab D.
    • Diószeghy-Léránt B.
    • Wünnemann M.
    • Zumfelde C.
    • Cramer E.
    • Rühlemann A.
    • Wagener J.
    • Gegenbauer S.
    • Flores F.G.
    • Jäger M.
    • Zietz D.
    • Hefter H.
    • Kecskeméthy A.
    • Siebler M.

    A novel multiple-cue observational clinical scale for functional evaluation of gait after stroke – The stroke mobility score (SMS).

    Med. Sci. Monit. 2020; 26 ()https://doi.org/10.12659/MSM.923147

    • Rajula V.R.
    • Springgate L.
    • Haque A.
    • Kamrunnahar M.
    • Piazza S.J.
    • Kaluf B.

    A Biomimetic Adapter for Passive Self-alignment of Prosthetic Feet.

    Mil. Med. 2021; 186: 665-673https://doi.org/10.1093/milmed/usaa230

    • Rasmussen H.M.
    • Nielsen D.B.
    • Pedersen N.W.
    • Overgaard S.
    • Holsgaard-Larsen A.

    Gait Deviation Index, Gait Profile Score and Gait Variable Score in children with spastic cerebral palsy: Intra-rater reliability and agreement across two repeated sessions.

    Gait Posture. 2015; 42: 133-137

    • Rathinam C.
    • Bateman A.
    • Peirson J.
    • Skinner J.

    Observational gait assessment tools in paediatrics – A systematic review.

    Gait Posture. 2014; 40: 279-285https://doi.org/10.1016/j.gaitpost.2014.04.187

    • Read H.S.
    • Hazlewood M.E.
    • Hillman S.J.
    • Prescott R.J.
    • Robb J.E.

    Edinburgh visual gait score for use in cerebral palsy.

    J. Pediatr. Orthop. 2003; 23: 296-301

    • Rennie L.
    • Dietrichs E.
    • Moe-Nilssen R.
    • Opheim A.
    • Franzén E.

    The validity of the Gait Variability Index for individuals with mild to moderate Parkinson’s disease.

    Gait Posture. 2017; 54: 311-317https://doi.org/10.1016/j.gaitpost.2017.03.023

    • Robinson L.W.
    • Clement N.
    • Fullarton M.
    • Richardson A.
    • Herman J.
    • Henderson G.
    • Robb J.E.
    • Gaston M.S.

    The relationship between the Edinburgh Visual Gait Score, the Gait Profile Score and GMFCS levels I-III.

    Gait Posture. 2015; 41: 741-743https://doi.org/10.1016/j.gaitpost.2015.01.022

    • Robinson L.W.
    • Clement N.D.
    • Herman J.
    • Gaston M.S.

    The Edinburgh visual gait score – The minimal clinically important difference.

    Gait Posture. 2017; 53: 25-28https://doi.org/10.1016/j.gaitpost.2016.12.030

    • Rodriquez A.A.
    • Black P.O.
    • Kile K.A.
    • Sherman J.
    • Stellberg B.
    • McCormick J.
    • Roszkowski J.
    • Swiggum E.

    Gait training efficacy using a home-based practice model in chronic hemiplegia.

    Arch. Phys. Med. Rehabil. 1996; 77: 801-805

    • Romei M.
    • Galli M.
    • Motta F.
    • Schwartz M.
    • Crivellini M.

    Use of the normalcy index for the evaluation of gait pathology.

    Gait Posture. 2004; 19: 85-90https://doi.org/10.1016/S0966-6362(03)00017-1

    • Ropars J.
    • Lempereur M.
    • Vuillerot C.
    • Tiffreau V.
    • Peudenier S.
    • Cuisset J.M.
    • Pereon Y.
    • Leboeuf F.
    • Delporte L.
    • Delpierre Y.
    • Gross R.
    • Brochard S.

    Muscle activation during gait in children with duchenne muscular dystrophy.

    PLoS One. 2016; 11e0161938https://doi.org/10.1371/journal.pone.0161938

    • Rozumalski A.
    • Schwartz M.H.

    The GDI-Kinetic: A new index for quantifying kinetic deviations from normal gait.

    Gait Posture. 2011; 33: 730-732

    • Russell D.J.
    • Rosenbaum P.L.
    • Cadman D.T.
    • Gowland C.
    • Hardy S.
    • Jarvis S.

    The gross motor function measure: a means to evaluate the effects of physical therapy.

    Dev. Med. Child Neurol. 1989; 31: 341-352

    • Sardogan C.
    • Akalan N.E.
    • Sert R.
    • Önerge K.
    • Bilgili F.

    The relationship between the Edinburgh Visual Gait Score and Gait Deviation Index.

    Gait Posture. 2020; 81: 325-326

    • Schmitt A.C.
    • Baudendistel S.T.
    • Fallon M.S.
    • Roper J.A.
    • Hass C.J.

    Assessing the Relationship between the Enhanced Gait Variability Index and Falls in Individuals with Parkinson’s Disease.

    Park. Dis. 2020; 2020

    • Schutte L.M.
    • Narayanan U.
    • Stout J.L.
    • Selber P.
    • Gage J.R.
    • Schwartz M.H.

    An index for quantifying deviations from normal gait.

    Gait Posture. 2000; 11: 25-31

    • Schwartz M.H.
    • Rozumalski A.

    The gait deviation index: A new comprehensive index of gait pathology.

    Gait Posture. 2008; 28: 351-357https://doi.org/10.1016/j.gaitpost.2008.05.001

    • Schwartz M.H.
    • Novacheck T.F.
    • Trost J.

    A tool for quantifying hip flexor function during gait.

    Gait Posture. 2000; 12: 122-127

    • Schweizer K.
    • Romkes J.
    • Coslovsky M.
    • Brunner R.

    The influence of muscle strength on the gait profile score (GPS) across different patients.

    Gait Posture. 2014; 39: 80-85

    • Shumway-Cook A.
    • Woollacott M.H.

    Motor Control: Theory and practical applications.

    Williams & Wilkins,
    Baltimore1995

    • Sienko Thomas S.
    • Buckon C.E.
    • Nicorici A.
    • Bagley A.
    • McDonald C.M.
    • Sussman M.D.

    Classification of the gait patterns of boys with Duchenne muscular dystrophy and their relationship to function.

    J. Child Neurol. 2010; 25: 1103-1109

    • Sinha A.
    • Kulkarni D.
    • Mehendale P.

    Plantar pressure analysis and customized insoles in diabetic foot ulcer management: Case series.

    J. Diabetol. 2020; 11: 204https://doi.org/10.4103/jod.jod_24_19

    • Starbuck C.
    • Reay J.
    • Silk E.
    • Roberts M.
    • Hendriksz C.
    • Jones R.

    Are there common walking gait characteristics in patients diagnosed with late-onset Pompe disease?.

    Hum. Mov. Sci. 2021; 77102777https://doi.org/10.1016/j.humov.2021.102777

    • Supiot A.
    • Genêt F.
    • Cattagni T.
    • Salga M.
    • Roche N.
    • Pradon D.

    Is the gait profile score a good marker of gait dysfunction in individuals with late effects of poliomyelitis?.

    Mov. Sport. Sci. – Sci. Mot. 2020-Janua. 2020; : 1-5https://doi.org/10.1051/sm/2020001

  • The development of mature gait.

    Gait Posture. 1997; 6: 163-170https://doi.org/10.1016/S0966-6362(97)00029-5

  • The evolution of clinical gait analysis part l: kinesiological EMG.

    Gait Posture. 2001; 14: 61-70

  • The evolution of clinical gait analysis part III–kinetics and energy assessment.

    Gait Posture. 2005; 21: 447-461

    • Syczewska M.
    • Dembowska-Bagińska B.
    • Perek-Polnik M.
    • Kalinowska M.
    • Perek D.

    Gait pathology assessed with Gillette Gait Index in patients after CNS tumour treatment.

    Gait Posture. 2010; 32: 358-362

    • Syczewska M.
    • Kocel K.
    • Święcicka A.
    • Graff K.
    • Krawczyk M.
    • Wąsiewicz P.
    • Kalinowska M.
    • Szczerbik E.

    Selection of gait parameters for modified Gillette Gait Index using Hellwig Correlation Based Filter method, random forest method, and correlation methods.

    Biocybern. Biomed. Eng. 2020; 40: 1267-1276https://doi.org/10.1016/j.bbe.2020.07.002

    • Syczewska M.
    • Święcicka A.
    • Szczerbik E.
    • Kalinowska M.
    • Dunin-Wąsowicz D.
    • Łukowicz M.

    Types of gait deviations in children and adolescents with Guillain-Barre syndrome identified using cluster analysis.

    Biomed. Signal Process. Control. 2021; 66102496https://doi.org/10.1016/j.bspc.2021.102496

  • Performance-oriented assessment of mobility problems in elderly patients.

    J. Am. Geriatr. Soc. 1986; 34: 119-126

    • Tingley M.
    • Wilson C.
    • Biden E.
    • Knight W.R.

    An index to quantify normality of gait in young children.

    Gait Posture. 2002; 16: 149-158

    • Toro B.
    • Nester C.
    • Farren P.

    A review of observational gait assessment in clinical practice.

    Physiother. Theory Pract. 2003; 19: 137-149https://doi.org/10.1080/09593980307964

    • Toro B.
    • Nester C.J.
    • Farren P.C.

    The Development and Validity of the Salford Gait Tool: An Observation-Based Clinical Gait Assessment Tool.

    Arch. Phys. Med. Rehabil. 2007; 88: 321-327https://doi.org/10.1016/j.apmr.2006.12.028

    • Toro B.
    • Nester C.J.
    • Farren P.C.

    Inter-and intraobserver repeatability of the Salford Gait Tool: an observation-based clinical gait assessment tool.

    Arch. Phys. Med. Rehabil. 2007; 88: 328-332

    • Trivedi J.
    • Srinivas S.
    • Trivedi R.
    • Davidson N.
    • Munigangaiah S.
    • Bruce C.
    • Bass A.
    • Wright D.

    Preoperative and Postoperative, Three-dimensional Gait Analysis in Surgically Treated Patients with High-grade Spondylolisthesis.

    J. Pediatr. Orthop. 2021; 41: 111-118https://doi.org/10.1097/BPO.0000000000001721

    • Tsitlakidis S.
    • Schwarze M.
    • Westhauser F.
    • Heubisch K.
    • Horsch A.
    • Hagmann S.
    • Wolf S.I.
    • Götze M.

    Gait Indices for Characterization of Patients with Unilateral Cerebral Palsy.

    J. Clin. Med. 2020; 9: 3888

    • Tulchin K.
    • Campbell S.
    • Browne R.
    • Orendurff M.

    Effect of sample size and reduced number of principle components on the Gillette Gait Index.

    Gait Posture. 2009; 29: 526-529

    • Turani N.
    • Kemiksizoğlu A.
    • Karataş M.
    • Özker R.

    Assessment of hemiplegic gait using the Wisconsin Gait Scale.

    Scand. J. Caring Sci. 2004; 18: 103-108

    • Ubhi T.
    • Bhakta B.B.
    • Ives H.L.
    • Allgar V.
    • Roussounis S.H.

    Randomised double blind placebo controlled trial of the effect of botulinum toxin on walking in cerebral palsy.

    Arch. Dis. Child. 2000; 83: 481-487

    • Uzun Akkaya K.
    • Elbasan B.

    An investigation of the effect of the lower extremity sensation on gait in children with cerebral palsy.

    Gait Posture. 2021; 85: 25-30https://doi.org/10.1016/j.gaitpost.2020.12.026

    • van Schie P.E.M.
    • Vermeulen R.J.
    • van Ouwerkerk W.J.R.
    • Kwakkel G.
    • Becher J.G.

    Selective dorsal rhizotomy in cerebral palsy to improve functional abilities: evaluation of criteria for selection.

    Childs Nerv. Syst. 2005; 21: 451-457

    • Viehweger E.
    • Pfund L.Z.
    • Hélix M.
    • Rohon M.-A.
    • Jacquemier M.
    • Scavarda D.
    • Jouve J.-L.
    • Bollini G.
    • Loundou A.
    • Simeoni M.-C.

    Influence of clinical and gait analysis experience on reliability of observational gait analysis (Edinburgh Gait Score Reliability).

    Ann. Phys. Rehabil. Med. 2010; 53: 535-546

    • Wafai L.
    • Zayegh A.
    • Woulfe J.
    • Begg R.

    Automated classification of plantar pressure asymmetry during pathological gait using artificial neural network.

    in: 2nd Middle East Conference on Biomedical Engineering. IEEE,
    2014: 220-223

    • Wang X.
    • Ristic-Durrant D.
    • Spranger M.
    • Gräser A.

    Gait assessment system based on novel gait variability measures.

    in: IEEE International Conference on Rehabilitation Robotics. IEEE Computer Society,
    2017: 467-472https://doi.org/10.1109/ICORR.2017.8009292

    • Wang L.
    • Sun Y.
    • Li Q.
    • Liu T.
    • Yi J.

    Two shank-mounted IMUs-Based gait analysis and classification for neurological disease patients.

    IEEE Robot. Autom. Lett. 2020; 5: 1970-1976https://doi.org/10.1109/LRA.2020.2970656

    • Wang L.
    • Sun Y.
    • Li Q.
    • Liu T.
    • Yi J.

    IMU-Based Gait Normalcy Index Calculation for Clinical Evaluation of Impaired Gait.

    IEEE J. Biomed. Heal. Informatics. 2021; 25: 3-12https://doi.org/10.1109/JBHI.2020.2982978

    • Wellmon R.
    • Degano A.
    • Rubertone J.A.
    • Campbell S.
    • Russo K.A.

    Interrater and intrarater reliability and minimal detectable change of the Wisconsin Gait Scale when used to examine videotaped gait in individuals post-stroke.

    Arch. Physiother. 2015; 5: 11

  • Clinical gait analysis: A review.

    Hum. Mov. Sci. 1996; 15: 369-387https://doi.org/10.1016/0167-9457(96)00006-1

  • Biomechanics and motor control of human gait: normal, elderly and pathological.

    University of Waterloo Press,
    1991

    • Wren T.A.L.
    • Rethlefsen S.A.
    • Healy B.S.
    • Do K.P.
    • Dennis S.W.
    • Kay R.M.

    Reliability and validity of visual assessments of gait using a modified physician rating scale for crouch and foot contact.

    J. Pediatr. Orthop. 2005; 25: 646-650https://doi.org/10.1097/01.mph.0000165139.68615.e4

    • Wren T.A.L.
    • Do K.P.
    • Hara R.
    • Dorey F.J.
    • Kay R.M.
    • Otsuka N.Y.

    Gillette gait index as a gait analysis summary measure: Comparison with qualitative visual assessments of overall gait.

    J. Pediatr. Orthop. 2007; https://doi.org/10.1097/BPO.0b013e3181558ade

    • Wren T.A.L.
    • Tucker C.A.
    • Rethlefsen S.A.
    • Gorton G.E.
    • Õunpuu S.

    Clinical efficacy of instrumented gait analysis: Systematic review 2020 update.

    Gait Posture. 2020; 80: 274-279https://doi.org/10.1016/j.gaitpost.2020.05.031

    • Wrisley D.M.
    • Marchetti G.F.
    • Kuharsky D.K.
    • Whitney S.L.

    Reliability, Internal Consistency, and Validity of Data Obtained With the Functional Gait Assessment.

    Phys. Ther. 2004; 84: 906-918https://doi.org/10.1093/ptj/84.10.906

  • ISB recommendations for standardization in the reporting of kinematic data.

    J. Biomech. 1995; 28: 1257-1261

  • Potential of the back propagation neural network in the assessment of gait patterns in ankle arthrodesis.

    Clin. Biomech. 2000; 15: 143-145

    • Wu G.
    • Siegler S.
    • Allard P.
    • Kirtley C.
    • Leardini A.
    • Rosenbaum D.
    • Whittle M.
    • D’Lima D.D.
    • Cristofolini L.
    • Witte H.
    • et al.

    ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion—part I: ankle, hip, and spine.

    J. Biomech. 2002; 35: 543-548

    • Wu G.
    • der Helm F.C.T.
    • Veeger H.E.J.D.
    • Makhsous M.
    • Van Roy P.
    • Anglin C.
    • Nagels J.
    • Karduna A.R.
    • McQuade K.
    • Wang X.
    • et al.

    ISB recommendation on definitions of joint coordinate systems of various joints for the reporting of human joint motion—Part II: shoulder, elbow, wrist and hand.

    J. Biomech. 2005; 38: 981-992

    • Xiang Y.
    • Arora J.S.
    • Abdel-Malek K.

    Physics-based modeling and simulation of human walking: a review of optimization-based and other approaches.

    Struct. Multidiscip. Optim. 2010; 42: 1-23https://doi.org/10.1007/s00158-010-0496-8

    • Yaliman A.
    • Kesiktas N.
    • Ozkaya M.
    • Eskiyurt N.
    • Erkan O.
    • Yilmaz E.

    Evaluation of intrarater and interrater reliability of the Wisconsin Gait Scale with using the video taped stroke patients in a Turkish sample.

    NeuroRehabilitation. 2014; 34: 253-258

    • Zhou J.Y.
    • Zhang K.
    • Cahill-Rowley K.
    • Lowe E.
    • Rose J.

    The Pediatric Temporal-spatial Deviation Index: quantifying gait impairment for children with cerebral palsy.

    Dev. Med. Child Neurol. 2019; 61: 1423-1431

    • Zimbelman J.
    • Daly J.J.
    • Roenigk K.L.
    • Butler K.
    • Burdsall R.
    • Holcomb J.P.

    Capability of 2 gait measures for detecting response to gait training in stroke survivors: Gait Assessment and Intervention Tool and the Tinetti Gait Scale.

    Arch. Phys. Med. Rehabil. 2012; 93: 129-136



  • Source link

    Leave a Reply

    Your email address will not be published.

    Previous Article

    Miami beats Notre Dame 16-6, misses out on first ACC Coastal title in 5 years

    Next Article

    GLAAD Calls Bill Maher’s ‘Real Time’ Segment on LGBTQ Community ‘Anti-Trans Rhetoric’

    Related Posts